MICRON // DUROX

NIPLATE® 600

Medium Phosphorus Electroless Nickel

Niplate 600 is a medium phosphorus (5-9% in P) electroless nickel plating. Niplate 600 is the most commonly used of Niplate coatings thanks to its high wear resistance, good corrosion resistance and its affordability.

EXCELLENT WEAR RESISTANCE

Thanks to its hardness and micro crystalline structure Niplate 600 has high wear and fretting resistance.

UNIFORM THICKNESS

Uniform and constant thickness over the entire surface, including holes, ideal for precision mechanical engineering pieces with reduced tolerances.

CHEAPER

Thickness being equal, compared to other treatments Niplate is cheaper thanks to the high efficiency of the deposition process.

APPLICABLE ON VARIOUS METALS

All the most common alloys used in mechanical engineering can be coated: iron, copper and aluminium alloys.

TECHNICAL SPECIFICATIONS

COMPOSITION

Ni 91 ÷ 95 %

P 5÷9%

Ni-P alloy, medium phosphorus electroless nickel plating

APPLICABLE STANDARDS

PRODUCT TECHNICAL STANDARDS

ISO 4527 | NiP(7)

ASTM B733 | Type IV

NSF 51 CERIFICATION

Certified NSF 51 – Food equipment material

ROHS CONFORMITY

RoHS conform. No restricted-use substances beyond maximum tolerated concentrations

REACH CONFORMITY

REACh conform. No SVHC in quantities greater than 0.1% by weight.

MDS REPORT

IMDS ID: 10647531

COATABLE METALS			
IRON ALLOYS	PRE-TREATMENT	ADHESION	CORROSION RESISTANCE
Carbon steel	-	****	* * * * \$
Stainless steel	Sandblasting	* * * * ☆	****
Case-hardened steel	Sandblasting	* * * * ☆	***
Nitrided steel	Sandblasting	$\star\star\star$	* * * * *
COPPER ALLOYS			
Brass, Bronze, Copper	-	****	****
ALUMINIUM ALLOYS			
Wrought alloys	-	****	* * * * ☆
Foundry and die-casting alloys	-	$\star\star\star\star\star$	* * * * *
TITANIUM ALLOYS			
Pure titanium and alloys	Sandblasting	* * * * ☆	****

COATING THICKNESS		
NOMINAL THICKNESS, OPTIONAL	TOLERANCE	
3 ÷ 75 μm	± 10% (min ±2 µm)	
Uniform thickness over entire external and internal surface		
Absence of point effect typical of galvanic coatings		

AESTHETIC APPEARANCE

Bright stainless metal appearance based on the morphology of the machined piece

Matt finish option (sandblasted, shot peened or shotblasted)

In case of hardening treatment, the layer could become discoloured:

- · 260-280°C, white colour and possible yellow halo effect
- · 340°C, iridescent blue-red colour

HARDNESS

The surface hardness of Niplate 600 varies according to the hardening heat treatment performed after layer deposition

layer deposition	
HARDNESS VALUE	HEAT TREATMENT
700±50 HV	Dehydrogenation 160-180°C x 4 hrs
800±50 HV	Hardening 260-280°C x 8 hrs
1000±50 HV	Hardening 340°C x 4 hrs

WEAR RESISTANCE				
Niplate 600 has high wear resistance, depending on the heat treatment performed				
APPROXIMATE WEAR VALUE, TWI-CS10	HEAT TREATMENT			
16±2 mg / 1000 cycles	Dehydrogenation 160-180°C x 4 hrs			
12±2 mg / 1000 cycles	Hardening 260-280°C x 8 hrs			
9±2 mg / 1000 cycles	Hardening 340°C x 4 hrs			
A LOW NUMBER INDICATES A BETTER PERFORMANCE – ASTM B733 X1 – TABER ABRASER WEAR TEST – ABRASIVE WHEELS CS 10 – LOAD 1 KG				

FRICTION COEFFICIENT

DYNAMIC DRY FRICTION COEFFICIENT VALUE

0.4 ÷ 0.6 depending on antagonist material

MICRON // DUROX

The corrosion protection of Niplate 600, assessed by means of salt mist test, depends on the base material, piece machining and finishing and the thickness of the applied coating APPROXIMATE CORROSION RESISTANCE VALUES BASE MATERIAL ≥1000 hours Brass ≥180 hours Carbon steel ≥240 hours Aluminium 6082

NSS ACCORDING TO ISO 9227 - THICKNESS 20 µm - CORRODED SURFACE < 5%

CHEMICAL RESISTANCE

For application where high chemical resistance is required Niplate 500 is recommended. Niplate 600 does in any case have good chemical resistance above all in alkaline environments.

- Hydrocarbons (e.g. petrol, diesel fuel, mineral oil, toluene)
- Alcohols, ketones (e.g. ethanol, methanol, acetone)
- Neutral saline solutions (e.g. sodium chloride, magnesium chloride, brine)
- Diluted reducing acids (e.g. citric acid, oxalic acid)
- Oxidizing acids (e.g. nitric acid)
- Soncentrated acids (e.g. sulphuric acid, hydrochloric acid)
- Diluted bases (e.g. diluted sodium hydroxide)
- Oxidizing bases (e.g. sodium hypochlorite)
- Concentrated bases (e.g. concentrated sodium hydroxide)

Approximate values of compatibility with the coating environment only, they do not indicate corrosion protection of the base material. The overall performance of the coated piece depends to a large extent also on the type and quality of the base material. The actual resistance to the environment must in any case be tested in the field.

WELDABILITY

Easily braze weldable using RMA, RA acid flow agents

FERROMAGNETISM	
PRESENCE OF FERROMAGNETISM	HEAT TREATMENT
Ferromagnetic	Dehydrogenation 160-180°C x 4 hrs
Ferromagnetic	Hardening 260-280°C x 8 hrs
Ferromagnetic	Hardening 340°C x 4 hrs

MELTING POINT, SOLIDUS

870°C

DENSITY

8,1 g/cm³