MICRON // DUROX

NIPLATE® 500 PTFE

Electroless Nickel PTFE

Niplate 500 PTFE is a composite high phosphorus (10-13%) electroless nickel plating containing 25-35% of PTFE particles.

The PTFE particles give to the layer anti-stick proprierties and a low coefficient of friction.

LOW COEFFICIENT OF FRICTION AND NON-ADHESION

Thanks to the high content of uniformly distributed PTFE particles, it possesses a high non-adhesion capacity and a very low friction coefficient (0.08 ÷ 0.12) in the absence of lubrication.

UNIFORM THICKNESS

Uniform and constant thickness over the entire surface, including holes, ideal for precision mechanical engineering pieces with reduced tolerances.

EXCELLENT ADHESION TO THE BASE MATERIAL

Compared to spray PTFE coatings, Niplate 500 PTFE has higher adhesion to the base material and higher hardness thanks to the metal matrix of electroless nickel.

APPLICABLE ON VARIOUS METALS

All the most common alloys used in mechanical engineering can be coated: iron, copper and aluminium alloys.

TECHNICAL SPECIFICATIONS

COMPOSITION		
The Niplate 500 PTFE coating consists of two layers of identical thickness: the first layer is medium phosphorus electroless nickel, the second layer is high phosphorus electroless nickel with PTFE particles.		
FIRST LAYER (40-60% of total thickness)	SECOND LAYER (40-60% of total thickness)	
Ni 91 ÷ 95 %	MATRIX Ni 87 ÷ 90 % - P 10 ÷ 13 %	
P 5÷9%	PARTICLES PTFE 300 nm 25 ÷ 35 % vol.	
Composite coating with electroless nickel and PTFE particle matrix.		

APPLICABLE STANDARDS

NSF 51 CERIFICATION

Certified NSF 51 – Food equipment material

ROHS CONFORMITY

RoHS conform. No restricted-use substances beyond maximum tolerated concentrations

REACH CONFORMITY

REACh conform. No SVHC in quantities greater than 0.1% by weight.

COATABLE METALS			
IRON ALLOYS	PRE-TREATMENT	ADHESION	CORROSION RESISTANCE
Carbon steel	-	****	***
Stainless steel	Sandblasting	$\star\star\star\star$	****
Case-hardened steel	Sandblasting	* * * * ☆	$\star\star\star$ \diamond \diamond
Nitrided steel	Sandblasting	* * * \$ \$	$\star\star\star$
COPPER ALLOYS			
Brass, Bronze, Copper	-	****	****
ALUMINIUM ALLOYS			
Wrought alloys	-	****	* * * * ☆
Foundry and die-casting alloy	'S -	****	* * * * *
TITANIUM ALLOYS			
Pure titanium and alloys	Sandblasting	****	****

COATING THICKNESS	
TYPICAL THICKNESS	TOLERANCE
15 μm	±3 µm
Uniform thickness over entire external and internal surface	
Absence of point effect typical of galvanic coatings	

AESTHETIC APPEARANCE

Gunmetal grey metal appearance due to the high content of PTFE particles.

Morphology similar to machined piece.

Matt finish option (sandblasted, shot peened or shotblasted)

In case of hardening at 260-280°C, discolouring of the layer could occur with possible brown halos.

HARDNESS

The surface hardness of Niplate 500 PTFE varies according to the hardening heat treatment performed after layer deposition

layer depo	osition	
HARDNES	SS VALUE	HEAT TREATMENT
	250±100 HV	Dehydrogenation 160-180°C x 4 hrs
	300±100 HV	Hardening 260-280°C x 8 hrs

WEAR RESISTANCE

Niplate 500 PTFE has high wear resistance in non-abrasive conditions and in applications with low local load It is not suitable for applications where types of abrasive wear exist.

Hence with the Taber Abrasive test, wear values are high.

APPROXIMATE WEAR VALUE, TWI-CS10	HEAT TREATMENT
33±2 mg / 1000 cycles	Dehydrogenation 160-180°C x 4 hrs
21±2 mg / 1000 cycles	Hardening 260-280°C x 8 hrs
A LOW NUMBER INDICATES A BETTER PERCORMANCE - ASTM 8733 XI - TABER ARRASER WEAR TEST - ARRASIVE WHEELS CS 10 - LOAD 1 KG	

FRICTION COEFFICIENT

DYNAMIC DRY FRICTION COEFFICIENT VALUE

0,08 ÷ 0,12 depending on antagonist material

Thanks to the high content of PTFE particles Niplate 500 PTFE has a very low dynamic dry friction coefficient which usually varies between 0.08÷ 0.12 depending on the antagonist material.

MICRON // DUROX

CORROSION RESISTANCE

The corrosion protection of Niplate 500 PTFE, assessed by means of salt mist test, depends on the base material, piece machining and finishing and the thickness of the applied coating

APPROXIMATE CORROSION RESISTANCE VALUES BASE MATERIAL

≥1000 hours Brass

≥240 hours Carbon steel
≥240 hours Aluminium 6082

NSS ACCORDING TO ISO 9227 - THICKNESS 20 µm - CORRODED SURFACE < 5%

CHEMICAL RESISTANCE

Excellent chemical resistance and to oxidization in many aggressive salt environments.

Passes the concentrated nitric acid immersion test (RCA, Nitric acid test – Concentrated nitric acid 42Bé, 30 seconds, room temperature).

- Hydrocarbons (e.g. petrol, diesel fuel, mineral oil, toluene)
- Alcohols, ketones (e.g. ethanol, methanol, acetone)
- Neutral saline solutions (e.g. sodium chloride, magnesium chloride, brine)
- Diluted reducing acids (e.g. citric acid, oxalic acid)
- Oxidizing acids (e.g. nitric acid)
- Sometimes acids (e.g. sulphuric acid, hydrochloric acid)
- ✓ Diluted bases (e.g. diluted sodium hydroxide)
- Oxidizing bases (e.g. sodium hypochlorite)
- Soncentrated bases (e.g. concentrated sodium hydroxide)

Approximate values of compatibility with the coating environment only, they do not indicate corrosion protection of the base material. The overall performance of the coated piece depends to a large extent also on the type and quality of the base material. The actual resistance to the environment must in any case be tested in the field.

WELDABILITY

Not braze weldable

FERROMAGNETISM	
PRESENCE OF FERROMAGNETISM	HEAT TREATMENT
Ferromagnetic	Dehydrogenation 160-180°C x 4 hrs
Ferromagnetic	Hardening 260-280°C x 8 hrs

MAXIMUM CONTINUOUS OPERATING TEMPERATURE

260°C

DENSITY

6,3 g/cm³

Via dell'Artigianato, 42 - 26029 Soncino (CR) Italy +39 037484986 - info@microncoatings.it P.IVA 01457420196

Strada Oselin, 18/20 - 33047 Remanzacco (UD) Italy +39 0432667185 - durox@durox.it P.IVA 00192790301