MICRON // DUROX

NIPLATE® 500

High Phosphorus Electroless Nickel

Niplate 500 is a high-phosphorus electroless nickel plating (10-13% in P). It is preferable to other Niplate coatings in case of contact with foods and when resistance to aggressive chemical agents is required.

EXCELLENT CHEMICAL AND CORROSION RESISTANCE

Thanks to the high chemical resistance of the coating and complete surface covering, the pieces treated with Niplate 500 are protected against corrosion and aggressive chemical substances.

UNIFORM THICKNESS

Uniform and constant thickness over the entire surface, including holes, ideal for precision mechanical engineering pieces with reduced tolerances.

APPLICABLE ON VARIOUS METALS

All the most common alloys used in mechanical engineering can be coated: iron, copper and aluminium alloys.

TECHNICAL SPECIFICATIONS

COMPOSITION

Ni 87 ÷ 90 %

P 10 ÷ 13 %

Ni-P alloy, high phosphorus electroless nickel plating

APPLICABLE STANDARDS

PRODUCT TECHNICAL STANDARDS

ISO 4527 | NiP(11)

ASTM B733 | Type V

NSF 51 CERIFICATION

Certified NSF 51 – Food equipment material

ROHS CONFORMITY

RoHS conform. No restricted-use substances beyond maximum tolerated concentrations

REACH CONFORMITY

REACh conform. No SVHC in quantities greater than 0.1% by weight.

MDS REPORT

IMDS ID: 359192271

COATABLE METALS			
IRON ALLOYS	PRE-TREATMENT	ADHESION	CORROSION RESISTANCE
Carbon steel	-	****	* * * * ☆
Stainless steel	Sandblasting	$\star\star\star\star$	****
Case-hardened steel	Sandblasting	$\star\star\star\star$	$\star\star\star$ \diamond \diamond
Nitrided steel	Sandblasting	$\star\star\star$	***
COPPER ALLOYS			
Brass, Bronze, Copper	-	****	****
ALUMINIUM ALLOYS			
Wrought alloys	-	****	* * * * ☆
Foundry and die-casting alloys	5 -	* * * * ☆	* * * ☆ ☆
TITANIUM ALLOYS			
Pure titanium and alloys	Sandblasting	* * * * ☆	****

COATING THICKNESS		
NOMINAL THICKNESS, OPTIONAL	TOLERANCE	
3 ÷ 50 μm	± 10% (min ±2 µm)	
Uniform thickness over entire external and internal surface		
Absence of point effect typical of galvanic coatings		

AESTHETIC APPEARANCE

Bright stainless metal appearance based on the morphology of the machined piece

Matt finish option (sandblasted, shot peened or shotblasted)

In case of hardening treatment, the layer could become discoloured:

· 340°C, iridescent blue-red colour

HARDNESS

The surface hardness of Niplate 500 varies according to the hardening heat treatment performed after layer deposition

layer deposition		
HARDNESS VALUE		HEAT TREATMENT
550±50	HV	Dehydrogenation 160-180°C x 4 hrs
1000±50) HV	Hardening 340°C x 4 hrs

WEAR RESISTANCE

For applications where the part undergoes wear, the use is recommended of Niplate 600 instead of Niplate 500. Niplate 500 nevertheless has good wear resistance depending on the heat treatment performed.

performed.		
APPROXIMATE WEAR VALUE, TWI-CS10	HEAT TREATMENT	
20±2 mg / 1000 cycles	Dehydrogenation 160-180°C x 4 hrs	
12±2 mg / 1000 cycles	Hardening 340°C x 4 hrs	
A LOW NUMBER INDICATES A BETTER PERFORMANCE – ASTM B733 X1 – TABER ABRASER WEAR TEST – ABRASIVE WHEELS CS 10 – LOAD 1 KG		

FRICTION COEFFICIENT

DYNAMIC DRY FRICTION COEFFICIENT VALUE

0.4 ÷ 0.6 depending on antagonist material

MICRON // DUROX

The corrosion protection of Niplate 500, assessed by means of salt mist test, depends on the base material, piece machining and finishing and the thickness of the applied coating APPROXIMATE CORROSION RESISTANCE VALUES BASE MATERIAL ≥1000 hours Brass ≥240 hours Carbon steel Aluminium 6082

CHEMICAL RESISTANCE

Excellent chemical resistance and to oxidization in many aggressive salt environments. Passes the concentrated nitric acid immersion test (RCA, Nitric acid test – Concentrated nitric acid 42Bé, 30 seconds, room temperature).

- Hydrocarbons (e.g. petrol, diesel fuel, mineral oil, toluene)
- Alcohols, ketones (e.g. ethanol, methanol, acetone)

NSS ACCORDING TO ISO 9227 - THICKNESS 20 µm - CORRODED SURFACE < 5%

- Neutral saline solutions (e.g. sodium chloride, magnesium chloride, brine)
- Diluted reducing acids (e.g. citric acid, oxalic acid)
- Oxidizing acids (e.g. nitric acid)
- Sometimes acids (e.g. sulphuric acid, hydrochloric acid)
- Diluted bases (e.g. diluted sodium hydroxide)
- Oxidizing bases (e.g. sodium hypochlorite)
- Some Concentrated bases (e.g. concentrated sodium hydroxide)

Approximate values of compatibility with the coating environment only, they do not indicate corrosion protection of the base material. The overall performance of the coated piece depends to a large extent also on the type and quality of the base material. The actual resistance to the environment must in any case be tested in the field.

WELDABILITY

Easily braze weldable using RMA, RA acid flow agents

FERROMAGNETISM			
PRESENCE OF FERROMAGNETISM	HEAT TREATMENT		
Non ferromagnetic	Dehydrogenation 160-180°C x 4 hrs		
Ferromagnetic	Hardening 270-280°C x 8 hrs		
Ferromagnetic	Hardening 340°C x 4 hrs		

MELTING POINT, SOLIDUS

870°C

DENSITY

7,9 g/cm³